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A theoretical relationship for mass transfer in the laminar flow region of  streaming in a rotating 
electrotyser was derived by the method of  similarity o f  the diffusion layer t'or electrodes placed 
sufficiently far from the rotation axis. The obtained relationship was compared with the known 
equations valid for systems with axial symmetry. The mean current densities were found from the 
numerical solution of  the convective diffusion equation by the finite-element method and were 
compared with experimental results. 

Nomenclature 

a 

c 
Co 

D 
F 
h 
J 
7 
J 
LJ 
H 

t l  r 

N 
Q 
0 
r 
r0 
r t 

rv 
r d 

V r 

V~ 

Z 

7 constant, exponent 
concentration 
concentration in the bulk phase F 
matrix coefficient 6 
diffusion coefficient 3~, 
Faraday constant, 96 487 C mol -~ v 
interelectrode distance e) 
current density f~ 
mean current density 
mass flux density 
base function Rechan 
number of transferred electrons in electrode R%o 
reaction R--elo c 
outer normal to the boundary 
mass flux Rerot 
number of nodal points in an element Re---~.ot 
volume rate of flow 

t mean volume rate of flow Rerot 
radial coordinate 
inner electrode radius Sc 
outer electrode radius Sha~ 
radius of inlet orifice Sha, 
outer disc radius Ta 
radial velocity component 

normal velocity component 
normal coordinate 
thickness of the layer in which the equation 
of convective diffusion is solved 
boundary of the integration domain 
thickness of the diffusion layer 
thickness of the Nernst diffusion layer 
kinematic viscosity 
angular velocity 
surface 

Criteria 
channe! Reynolds number Q/hv 
local Reynolds mlmber, Q/rcv(r + ro) 
local Reynolds number at mean electrode 
radius, Q/rcv(ri + ro) 
rotation Reynolds number, cot~/v 
modified rotation Reynolds number at mean 
electrode radius, o9(rj + ro)~ /4v 
modified rotation Reynolds number, co(r + 
ro)2/4v 
Schmidt number, v/D 
local Sherwood number, j (r  - ro)/nFDco 
mean Sherwood number, f (r I - ro)/nFDco 
Taylor number, h(co/v) t/2 

1. I~troduction 

A system of two rotating parallel disc electrodes with 
axial inlet of electrolyte is denoted in the literature as 
a rotating electrolyser [t]. One of the disc electrodes is 
provided with a central hole for the electrolyte inlet 
[2]; the electrodes are electrically insulated and fixed to 
a common axis, around which they rotate at an angular 
velocity, co, (Fig. I). Interaction between radial flow of 

electrolyte and rotation of the disc brings about a 
strong streaming in their proximity, so that the 
anolyte and catholyte are hydrodynamically separated 
from each other if the flow is laminar and the 
rotation speed is sufficiently high [3]. It is also possible 
to use this equipment as a diaphragmless electrolyser 
[1, 4]. 

A survey of results from the solution of a system of 
Navier-Stokes equations and the continuity equation 
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Fig. 1. Rotating electrolyser. (Symbols: as denoted in nomenclature 
listing). 

and analysis of the course of the velocity components 
and of the static pressure in a rotating electrolyser was 
given by Jansson [1]. The velocity field and the static 
pressure were approximated by functions of first and 
third order [1] and later by functions of  fifth order [5]. 
Analysis of the velocity field showed that for higher 
values of  the Taylor number (Ta  = h(co/l@/2 >/ 14) 
and of  the channel Reynolds number ( R % , ,  = 
Q/hv ~> 1500) the functions of  third and higher orders 
oscillate, impairing the accuracy of  the description of  
the velocity field close to the inlet [5]. 

To calculate the velocity field, not only the kinematic 
viscosity of  the electrolyte, v, the interelectrode 
distance, h, and the angular velocity, co, must be 
known, but also the volume flow rate, Q. If  the elec- 
trolyte is forced to flow by means of  an external pump, 
the value of  Q is known; if it flows spontaneously, the 
value of Q is governed by the angular velocity, the 
geometry of  the system, and the physical properties of  
the electrolyte. Ferreira and Jansson [6] measured the 
volume rate of flow in a syste m with an inlet orifice 
radius r~ = 13 mm and a disc radius r d = 76 mm by 
following the rate of passage of injected CuSO4 
toward a detector electrode. They found that Q 
(cm 3 s -*) can be approximated by the empirical 
equation 

Q = 4.173o) 0.9737 (1) 

valid for co up to 42s -~ and h from t.7 to 8ram. 
Accordingly, the volume rate of flow is independent of 
the interelectrode distance, h. 

Transition from laminar to turbulent flow takes 
place at Rero t = cor2d/v ~ 1.8 x 105 [4] in accord with 
measurements on a free rotating disc [7]. Ferreira and 
Jansson [6] gave the critical values of the mean 
Reynolds rotation criterion characterizing the tran- 
sition to turbulent flow for electrodes at various 
distances from the disc centre. These critical values 
depend on the inter-electrode distance. 

The convective equation has not been solved for a 
rotating electrolyser. Measurement of the mass transfer 
[4] in the limiting current region showed that the 
Reynolds rotation criterion (Rero t = eor~/v) rather 
than the Taylor criterion (Ta  = h(co/v) ~i2) is suitable 

for the calculation of the mean current density, f 
Thus, for the studied system (rv = ro = 22ram, 
r~ = ra = 78mm, h = 3.5 or 6.4ram) the following 
equation was found by Jansson [4]: 

= R ~0,565 f 0.225 n --erot Co (2) 

where f is expressed in A cm- 2, co (mol cm-  3 ) denotes 
the concentration of electroactive species and n is the 
number of transferred electrons. 

More accurate measurements [6] on a system with 
r,. = 13mm and r d = 76mm and with electrodes 
located at various distances from the centre in the 
self-pumping regime led to the conclusion that the 
rotation Reynolds criterion should involve the mean 
radius of  the disc electrode defined as 

1 2  r~ ) ] l ] 2  r~v = [~(r0 + (3) 

Then the mean current density f can be expressed as 

a2 
f = a I r/ Re ro t , av  C O (4) 

where Rerot.,v = corZav/v, al (in A cm tool -1) and a2 are 
constants for the given geometry, a 2 = 0.43 - 0.58, 
co in molcm -3 [6]. 

The object of  the present work was to find a theor- 
etical dependence for the mass transfer in the laminar 
flow region. 

We suppose that the electrode reaction is very fast 
and the solution contains an excess of supporting 
electrolyte, so that we may neglect the migration term 
in the equation of convective diffusion for an electro- 
active ion (minor species). We used the method of 
similarity of diffusion layer and numerical solution of 
the convective diffusion equation by the finite-element 
method. The results are compared with experimental 
data from the literature. 

2. M e t h o d  o f  s imi lari ty  o f  the diffusion layer 

The assumption of similarity of the diffusion layer 
profiles [8] implies that the concentration distribution 
c(z) of the electroactive species in the diffusion layer at 
any distance, r, from the centre can be described by the 
same function of the distance, z, from the electrode 
surface. We assume that c(z) can be expressed by a 
polynomial oL at most, third order, 

c(z)/co = ao + a lz  + a2z 2 + a3z 3 (5) 

where a0 � 9  a3 are constants and co denotes the bulk 
concentration. We define the thickness, 6, of the 
diffusion layer by the conditions that at the electrode 
surface (z = 0) we have c = 0, 3ac/Oz 2 = 0, and for 
z = 6 we have c = c o, ~ c / &  = 0; the value of 6 in the 
distance r from the rotation axis. The condition C92C/ 
0z 2 = 0 for z = 0 is exactly valid only for binary 
electrolytes (e.g. CuSO4-H20 ) [9] and as a good 
approximation for systems with large excess of  the 
supporting electrolyte (e.g. for 0.001 M K3Fe(CN)6 . 
0.001 M K4Fe(CN)6, 0.1 M NaOH). These four con, 
ditions enable us to determine the constants in 
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Fig. 2. Mass balance in an element at the lower electrode and 
concentration profile at points r 0 and r. (Symbols: as denoted in 
nomenclature listing). 

Equation 5, which thus takes the form of 

c(z)/co = 1.5 z/3 - 0.5(z/3) ~ (6) 

The thickness 6, thus defined, is related to the Nernst 
diffusion layer thickness, bN, as 6 = 1.5 6N [8]. 

The dependence of 6 on the radius r is obtained 
from the mass balance in a volume element &thickness 
6, which is shown in Fig. 2 together with the con- 
centration profiles at r = r0 and at a distance r from 
the disc centre. Since we consider the steady state 
without a source, the mass fluxes n satisfy the equation 

f i l  - -  /~i2 - -  n 3  ~"  ~'dif ( 7 )  

These quantities have 'the character of convective 
flows. Analytically expressed, they are of the form: 

~6 f'r 
c~176 Jo v~(r~ dz  - co J,0 rv~(6) dr 

f~s ;~ ( a t ) ,  dr (8) - r % ( r ) c ( z ) d z  = D j , . o r  ~z =0 

The concentration c in the second integral is located in 
the distance c~ from the electrode and is constant 
c = c0 at boundary 8. 

The concentration distribution in the diffusion layer 
is approximated by Equation 6. Simple relations for 
the radial, %, and normal, v_,, velocity components of 
the electrolyte can only be obtained if the electrode 
surface is located sufficiently far from the rotation 
axis; then the expansions for the velocity components 
involve only terms inversely proportional to the 
dimensionless radius [1, 5] and the terms of higher 
order can be neglected. (See Appendix A) 

Accordingly, we may set the normal velocity com- 
ponent equal to zero and the radial velocity at the 
electrode sufficiently apart from the rotation axis can 
be estimated fl;om the Taylor theorem [10] as 

%(z)  ~- % ( 0 ) +  ~?zj~= ~ z (9) 

where % ( 0 ) =  0 according to the condition of 
adherence. The final approximate equation for the 
radial velocity at the wall is 

%(z)  ~- Qcoz/2zcvr (10) 

We may assume that this equation holds good up to a 
distance z from the electrode surface, where the radial 
velocity attains its maximum value [11]. 

On introducing equations 6 and 10 into 8 with 
regard to the condition v:(c~) = 0 (the terms of third 
and higher order) we can be neglected in comparison 
to the term of first order) we obtain 

( Q c o c o / v ) { f 2 z  dz -- J~i [1.5(z/a) -- O.5(z/g)~Jz dz} 

= 37rDco J31~ ( r / 6 ) d r  (11) 

and after calculating the integrals 
Or 

Q(o32 = 30~vD t~0 (r/cS) dr (12) 

The thickness of  the diffusion layer, 3, depends on the 
distance, r, from the centre, hence the integral in 
Equation 12 cannot be evaluated in a simple way. 
However, if r -~ r 0, the value of 3 can be considered 
constant and we obtain 

c~ = [t5rcv(r 2 - ro)Dlo)Q] if3 (13) 

(See Appendix B) 
Let us assume that the proportionality between 3 

and (r 2 - r2) ~/3 is preserved even for r not close to rc~; 
then Equation 12 gives 

b = [22.57zv (r 2 -- r~)D/coQ] ~j~- (14) 

This result cannot be used in the region where the 
radial velocity profile is not fully developed (Ta  <~ 3) 
and when b is larger than the normal distance of the 
radial velocity maximum from the electrode. (See 
Appendix C) 

Knowledge of the diffusion layer thickness allows 
calculation of the local diffusion flux intensity to the 
electrode 

Oc): (15) 
s D 0z =0 

Equation 6 gives 

(?z l:=o 

and therefore 

= l . S c U 6  (t6) 

J,.a, - 1.5De0/6 (17) 

The negative sign means that the intensity of the 
diffusion flux is directed against the z-axis. 

For rapid electrode reactions, the current is con- 
trolled by diffusion of electroactive species to the elec- 
trode surface and the limiting current density is given 
as  

j = nFJ,,,dic (18) 

which, together with Equations 14 and t7, gives 

j = 0 .363nFD 2/3 co(~oQ/v) 1/3 (r z - r~) ~/3 (19) 
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This can be transformed into dimensionless form by 
introducing the dimensionless criteria; the charac- 
teristic length for the Reynolds number is the mean 
radius �89 + ro) and that for the Sherwood number is 
the distance from the inner electrode boundary. We set: 

the local Sherwood number, Sha~ = j ( r -  ro)/ 
nFDco; 

the local Reynolds number, Relo c = Q/[zcv(r + r0)]; 
the modified rotation Reynolds number, Re'ro, = 

co(r + ro)2 /4v; and 
the Scmidt number, Sc = v/D 

Thus, Equation 19 takes the form 

ShA, = 0.841 [(r - ro)/(r + ?'0)] 2/3 SC|/3 ~'~loc/P"l/3 *'~rotJ~D'l/3 

(20) 

The mean current density to the electrode of inner 
radius r0 and outer radius rl is calculated as follows: 

= ; ;i 27~r dr (21) f q 2~zjr dr~; ri 
o o 

On introducing Equation 19 and rearranging, we 
obtain 

f = 0.544 nFD 2/3 Co(OoQ/v) ~/3 r~ - r2) -~/3 (22) 

By introducing the criteria 

Sh--Ar = f(r~ - ro)/nFDco (23a) 

Relo~ = Q/Trv(ro + r l )  (23b) 

Rero~ = co(ro + rl)Z/4v (23c) 

Equation 22 can be put into the dimensionless form 

S~6r = 1.262 [(r~ - ro)/(?.~ + r0)]  2/3 SC I/3 ~7~ -~pl/3~Urot 

(24) 

which can be considered as the basic criterion equation 
for the mass transfer in a rotating electrolyser with 
electrodes placed at a sufficient distance from the axis 
of rotation in the laminar regime. 

3. Comparison of equations for mass transfer in a 
rotating electrolyser with equations for other axial 
symmetric system 

From the practical point of view, the basic axi- 
symmetric system is a rotating disc electrode. The 
volume rate of flow leaving the disc by centrifugal 
force, on one side of the disc, at a distance r from the 
rotation axis is given as [12] 

Q = 0.8867zr2@ov) 1/2 (25) 

The mean value of Q at the disc of radius re can be 
calculated as 

0 = f :  Q d A / / S  dA = Iod2rcrQdr/"jo a 272r dr 

(26) 

On introducing Equation 25 we obtain 

= 0.4437zr~(cov) m (27) 

On combining this result with the criterion Equation 

24 for a rotating electrolyser, we obtain, for a free disc 
(r0 = 0), 

- -  = " ~ p l / 2  Shar 1.215Sc 1/3 _wro t (28) 

According to the theory of the rotating disc electrode 
[7], the criterion (Equation 23 involving the mean 
Sherwood number) and the rotation Reynolds number 
has the form 

S--ha, = 1.242Sc 1/3 ~-dl/2*~rot (29) 

The latter two equations differ merely by the constants 
of proportionality, their relative difference being 
2.2%. 

If we apply the same procedure to a rotating disc 
with a ring, we obtain from Equation 24 

(r l  -- VoX~( ~11 -~- /~0~1/3 Sccl/3 ~pl/2 
~Ar -- 1.21471 -~ roJ \  r2 - ~ ]  ~ e r ~  

(30) 

According to rotating ring-disc theory [7], the mean 
Sherwood number is given by 

S-hAt = 1.242 (r~ - F3) 2/3 Sr -~ol/2..~rot (31) 
r~ + 4 

In this case Equation 30 for the rotating electrolyser 
gives results lower by 2.2 (for r 0 = 0) to 6.0 per cent 
(for r0 = 0.9999 rl) then Equation 31 for the rotating 
disc with a ring. 

If the discs rotate slowly (Ta <~ 3), the system 
behaviour approaches that of a capillary gap electro- 
lyzer [13]. The criterion equation for this system has 
the form [8] 

S--hAt = 1.45 [(r I - -  ro)/h] 2/3 Sc 1/3 ~l/31,~loc (32) 

involving the mean Sherwood number and local 
Reynolds number (given in Equations 23a, b and c). 

4. Calculation of mean current densities by the finite- 
element method 

The finite-element method has become an efficient 
means for solving differential equations describing 
various physical problems [14-16]. We therefore used 
this method in solving the simplified equation of con- 
vective diffusion for mass transport to the electrodes of 
a rotating electrolyzer. In a cylindrical coordinate 
system, with axial symmetry, this equation reads 

& & (02c l~c  02c'~ 
% -~r + Vz ~z = D \ c~r2 + -r ~r + ~ j (33) 

The integration domain near the electrode is divided 
into elements and the concentration in each of them is 
approximated by the expression 

N 
c = ~ Ljcj (34) 

j=l 
where N denotes the number of nodal points in an 
element and Lj the base function. The weighted 
residue method and Green's theorem served to derive 
the statement of the problem [17]. After rearrangement 
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Fig. 3. Division of the integration domain into finite, linear, axial 
symmetric elements for solving the convective diffusion equation. 
(Symbols: as denoted in nomenclature listing). 

we obtain for each element the system of  equations 

8c 
C~cj = D fr rLi ~ d r  (35) 

where F denotes the boundary of the domain where no 
stable boundary condition (concentration) is pre- 
scribed, and nv denotes the outer normal to the 
boundary. The term Cj is defined as 

aLj a~tj 
Cij =- [[~jj~ r vr ~ L i + Vz ~ z  L i  

OL, L  OL, 
+ D 8--77 8---Z + D 8--r- ~ z / d r  dz (36) 

The domain which is divided into elements can be set 
equal to that part  of  the interelectrode space in which 
the concentration rises from zero at the surface to c o in 
the bulk. A section of  the space between the disc in the 
r-z plane with the domain for solving the convective 
diffusion Equation 33 is shown in Fig. 3. For numerical 
solution of this equation the simplest linear isopara- 
metric elements with four nodal points (N = 4) were 
used. 

Since complications arise in solving problems with 
dominant  convective terms causing oscillations of  the 
solution, we used the Petrov-Galerkin method [18]. 
Introduction of the boundary conditions presents no 
problems. The concentration of the electroactive 
species is assumed to be equal to zero (c = 0) at the 
electrode surface, whereas it is equal to the bulk con- 
centration (c = Co) at the inlet cross-sectional area of  
flow and at a plane parallel to the electrode at a 
distance 7 > 3. We assume that the diffusion flux 
through the inlet plane is negligible compared to the 
convective flow, i.e. cSc/Snr = O. 

The program was compiled by using the published 
schemes and methods [16]. The diffusion flux was 
determined from the macroscopic balance in the 
whole integration domain after calculating the con- 
centrations at the nodal points. The domain was 
divided by a grid of  20 x 20 nodal points, i.e. 381 
elements. The integral in Equation 36 was calculated 
by the Legendre-Gauss quadrature formula with a 
grid of  2 • 2 integration points [9]. 

The program for the numerical solution of the 
convective diffusion equation was used to calculate 
the mean current densities in a system studied experi- 
mentally by Ferreira and Jansson [6] with a sol- 
ution of 0.001 M K3Fe(CN)6 + 0.001 M K4Fe(CN)6 + 
0.1 M NaOH.  The corresponding kinematic viscosity, 
v, and the diffusion coefficient were measured [8, 20] as 
v = 0.01cm2s --J and D = 6.9 x 10 ~'cm2s ~ at 
25 ~ C. The volume rate of  flow was approximated by 
Equation 1 for any geometry, the radial and normal 
velocity components,  vr and v_,, were approximated by 
expansions with functions of up to third order [5]. The 
calculation of the mean current density was repeated 
for 14-18 values of  the angular velocity (1.6s -~ <~ 
co ~< 22.7s 1); the results were treated by the least 
squares method for a given geometry with the aid of  
the regression equation 

f = a3 coa~ (37) 

The correlation coefficient exceeded 0.99 in all cases; 
the calculation by the finite-element method lasted for 

50-60 s on an ICL 4-72 computer for each given 
angular velocity. 

The values of  a 3 and a4 for approximation of  the 
values of  f obtained experimentally [6], calculated by 
the finite-element method, calculated from Equation 
24, and finally from Equation 31 are given in Table I. 
The mean current densities calculated by the finite- 
element method for co = 20s 1 differ from the 
experimental ones [6] by - 4 - + 8 0 % ,  those from 
Equation 24 differ by 48-150 and those from Equation 
31 by 1-154%. 

For an electrode with r 0 = 26.8 mm, r~ = 37.5 mm 
the relative error of  the results calculated by the finite- 
element method (for co = 20s 1) ranges from - 4 -  
11%; for r 0 = 38.7mm and r~ = 70.2ram from 
18-45%; and for r0 = 71.4ram and r~ = 76.0mm 
from 58-80%. In all cases, the error rises from the 
smallest value at the largest interelectrode distance 
(h = 9.0ram) to the highest value at the smallest 
distance (h = 1.6mm). 

The best results were determined for the finite 
element method calculation although not without 
considerable errors (up to 80%). The sources of  the 
error are the following. The kinematic viscosity, v, and 
the diffusion coeff• D, were estimated from litera- 
ture [8, 20]. The error may be up to _+ 10%. The 
volume flow rate was approximated by the empirical 
Equation 1, independent of  geometric parameters of  
the system. The error of  this equation may be up to 
_+ 15%. Close to the external border of  the electrode 
with the greatest radius (r 0 = 71.4mm, rl = 76.0mm) 
the current density may be influenced by effects related 
with changes of  the flow toward the bulk of the solution 
(the error may be _+ 30% and more). 

5. Conclusions 

A relationship was found for the calculation of  the 
mean current density to electrodes located at a sufficient 



116 M. SIMEK AND I. ROUSAR 

Table 1. Constants a 3 and a4 for Equation 37 based on experimental data [6], on the numerical calculation by the finite-element, on Equation 
24 for a rotating eleetrolyzer, and on Equation 31 for a rotating disc electrode with a ring. 

r o r I h Measured [6] Calculated (FEM) Equation 24 Equation 31 
(ram) (ram)  (mm) 

a 3 a 4 a3 a4 a3 a 4 a3 a 4 

(10 -2 mAcm -~) (10 .2 mAcm -~ ) (10 -2 mA cm -2) (10 .2 mA cm -2) 

26.8 37.5 

38.7 70.2 

71.4 76,0 

1.6 8.58 0.4325 9.12 0.4005 7.47 0.6579 7.06 0.5 
4.5 7.25 0,4758 7.26 0.5039 7.47 0.6579 7.06 0.5 
9.0 7.69 0,4661 7.29 0,5201 7.47 0.6579 7.06 0.5 

1.6 2.99 0.5880 451 0.5776 4.38 0.6579 5.95 0.5 
4.5 3.91 0.5593 4,16 0,6010 4.38 0.6579 5,95 0.5 
9.0 4.10 0.5504 4A6 0,6010 4.38 0.6579 5.95 0,5 

1.6 4,44 0.5295 7.10 0.5746 7.51 0.6579 12,3 0.5 
4.5 6.44 0,4983 7.07 0.6208 7.51 0.6579 12.3 0.5 
9.0 6.34 0.4818 7.07 0.6208 7.51 0.6579 12.3 0.5 

distance from the axis of  rotation. This relationship 
(Equation 24) takes the form of  Equation 29 known 
from the theory of  the rotating disc electrode, if the 
mean rate of  flow at the rotating disc is introduced, 
within an error of  2.2%. 

For  a rotating electrolyser with electrodes located 
nearer to the axis of  rotation, Equation 24 cannot be 
used and the mean current density must be found from 
the numerical solution of  the convective diffusion 
equation. However,  close to the inlet at a higher 
rotation speed oscillations take place, making the 
numerical solution impossible. Equation 31 for the 
rotating disc with a ring does not involve the volume 
rate of  flow; the relative error of  the mean current 
density f f r o m  Equation 31 at a) = 20 s -  i, compared 
to the experimental values, ranges from 1 to 154% 
according to the geometry of the electrodes. 

Appendix A: Condition of a sufficient distance from 
the rotation axis 

The radial velocity, v,, in a rotating electrolyser is 
approximated by the equation [1, 5] 

7 r - - - r -  + \ ~ }  ,.' + . . . .  

(A-1) 

where 5 = ( z -  h /2 ) (o /v )  t12 denotes dimensionless 
distance. At a sufficient distance from the axis o f  
rotation, we assume that the functions of  higher order 
than one are negligible. Hence, 

L A '  (~ ) 
@ 1  > o ,.3 (A-2) 

Close to the electrode, where the equation of convective 
diffusion is solved, the functions J]' (~) and A'(~) are 
approximated by using the Taylor  theorem in the 
form 

j,'(e) = + - ) 
(A-3) ( 

.~3 ' (~)  f 3 e ( Z b )  -[- f 3  z (ZB)(  ~ Zb)  J 

where 5b denotes the dimensionless normal coordinate 
of the lower disc (z = 0), i.e. 5 b = -h/2(e) /v)  ~/2. At 
the lower disc the functionsf~ and f3 acquire the values 
[1, 51 

.L ' (~0 = f3"(5~) = o ] 
! 

A"(eO Q(oo/vVU(2~) } (A-4) 
/ 

/;~"(2b) -- 3Q2o/(407r2v3) ) 

By introducing Equations A-3 and A-4 into A-2 we 
obtain, after rearrangement, 

r 2 >> 3Q/[2OTz(cov) 1/2] (A-5) 

The radial velocity must be well described in the whole 
interelectrode space, i.e. beginning from the inner elec- 
trode boundary.  Equation A-5 for r = r 0 expresses 
the condition for a sufficient distance from the rotating 
axis. By introducing the rotation Reynolds number  
(Remt.,. 0 = o)r2/v) and the local Reynolds number 
(Repot.,0 = Q/2rcvro) at the inner electrode boundary,  
we obtain from Equation A-5 the condition 

Re~;2tro/Relo~,. > 0.3 (1-6) , ", 0 

Appendix B 

The thickness of  the diffusion layer c5 = 6(r) can be 
approximated by means of  the thickness of  the dif- 
fusion layer ~5(r') at the point r ' ( r  0 ~ r ~ r '  ~< r~) as 

6 ( 0  = 6(r')[(r 2 - r2)/(r "2 -- r~)] '/~ (B-l) 

On introducing 3(r) from Equation B-1 into 12, and 
while rearranging, we obtain 

( r  '2 - -  r 2 )  |/3 ,r r dr 
Qco62(r) = 307zvD ~ r ; )  J,"0 (r 2 --- r~) 

(B-2) 

After calculation of the integral in Equation B-2 we 
obtain 

Qoo62(r) = 22.5=vD(r.2 _ r ~ ) l / 3  @2  __ r~)/a(r') 

(B-3) 
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By eliminating 5(r') from Equations B-t and B-3, we 
receive for aft) 

Oco32(r) = 22,5rcvD (r 2 - r2)/6(r) (B-4) 

and 

c53(r) = 22.5nvD(/- - r~)/ooQ (B-5) 

Equation B-5 is equivalent to Equation 14. 

Appendix C: Condition 'for the diffusion layer not to 
extend a greater distance from the electrode than 
would correspond to the radial velocity maximum 

The approximation of the radial velocity at a sufficient 
distance from the rotation axis (Condition A-6) is 

L'(~) (C- 1) 7) r = y - -  
r 

That is, in Equation A-! we neglected the terms of 
higher order than the first. We assume that the radial 
velocity maximum lies at a distance d measured from 
the upper electrode; d corresponds to the dimension- 
less coordinate d = (h/2 - d)(co/v) ~n. At the local 
extremum the first derivative is equal to zero: i.e. 

&G - 0 ( c - 2 )  

which together with Equation (C-I) gives 

A"(d) : 0 (C-3) 

The function~'(Y.) is given by [l, 5]: 

j i ' (5)  = (A, + B~) sinh 5cos  

+ (& - A~) cosh ~" sin 2, (C-4) 

where 

A I Q(m/v3) ~j2 sinh zt sin %/[n(sinh 25 t - sin 250] 

(C-5a) 

B1 = - Q(e)/v3) ~i2 cosh % cos ~ 

x [rc(sinh 25~ - - s in  22,)] (C-5b) 

and s denotes dimensionless normal distance of the 
upper electrode (z = h), s = (h/2)(co/v) */2. 

For a well-developed streaming profile (Ta > 5; 
and sinh d ~ cosh d) we obtain, by combining 
Equations C-3 and C-4 

A~ + B~ sin (t 
= (C-6) 

A~ -- B~ cos c7 

If  the constants A ~ and B~ are expressed by Equations 
C-5a and b and using the condition sinh ~t m cosh 2t, 
we obtain 

sin 5, - cos ~t sin c7 
- ( c - 7 )  

sin zt + cos ~, cos d 

and after rearrangement 

cos ( - 8 +  n/4 + 5~) : 0 (C-8) 
sin (n/4 + i~) cos ct 

This relation is satisfied if the numerator is equal to 
zero, i.e. if 

- - c 7 +  ~/4 + 2~ = n/2 + krc, 

k = 0, +1,  •  (C-9) 

After rearrangement the previously given condition 
can be written for k = 0 as 

d = 0.25g(v/eo) I/2 ( C - | 0 )  

For the condition used in deriving Equation 14 to 
be satisfied, the thickness of the diffusion layer, 5, 
must not exceed the distance of the radial velocity 
maximum from the electrode. Thus, 

3 < d (C-l I) 

By introducing Equations 14 and C-10 into the 
inequality C-11 we obtain, after rearrangement, the 
sought condition in the form 

(q - 4 )  D (c~/v) ~/2 < 6.86 x 10 -3 (C-I2) 
Q 
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